3.344 \(\int \sec (e+f x) (a+a \sec (e+f x))^m \, dx\)

Optimal. Leaf size=73 \[ \frac{2^{m+\frac{1}{2}} \tan (e+f x) (\sec (e+f x)+1)^{-m-\frac{1}{2}} (a \sec (e+f x)+a)^m \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{1}{2}-m,\frac{3}{2},\frac{1}{2} (1-\sec (e+f x))\right )}{f} \]

[Out]

(2^(1/2 + m)*Hypergeometric2F1[1/2, 1/2 - m, 3/2, (1 - Sec[e + f*x])/2]*(1 + Sec[e + f*x])^(-1/2 - m)*(a + a*S
ec[e + f*x])^m*Tan[e + f*x])/f

________________________________________________________________________________________

Rubi [A]  time = 0.0612911, antiderivative size = 73, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {3828, 3827, 69} \[ \frac{2^{m+\frac{1}{2}} \tan (e+f x) (\sec (e+f x)+1)^{-m-\frac{1}{2}} (a \sec (e+f x)+a)^m \, _2F_1\left (\frac{1}{2},\frac{1}{2}-m;\frac{3}{2};\frac{1}{2} (1-\sec (e+f x))\right )}{f} \]

Antiderivative was successfully verified.

[In]

Int[Sec[e + f*x]*(a + a*Sec[e + f*x])^m,x]

[Out]

(2^(1/2 + m)*Hypergeometric2F1[1/2, 1/2 - m, 3/2, (1 - Sec[e + f*x])/2]*(1 + Sec[e + f*x])^(-1/2 - m)*(a + a*S
ec[e + f*x])^m*Tan[e + f*x])/f

Rule 3828

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[(a^In
tPart[m]*(a + b*Csc[e + f*x])^FracPart[m])/(1 + (b*Csc[e + f*x])/a)^FracPart[m], Int[(1 + (b*Csc[e + f*x])/a)^
m*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] &&  !GtQ
[a, 0]

Rule 3827

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Dist[(a^2*
d*Cot[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]]), Subst[Int[((d*x)^(n - 1)*(a + b*x)^(m -
 1/2))/Sqrt[a - b*x], x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !In
tegerQ[m] && GtQ[a, 0]

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int \sec (e+f x) (a+a \sec (e+f x))^m \, dx &=\left ((1+\sec (e+f x))^{-m} (a+a \sec (e+f x))^m\right ) \int \sec (e+f x) (1+\sec (e+f x))^m \, dx\\ &=-\frac{\left ((1+\sec (e+f x))^{-\frac{1}{2}-m} (a+a \sec (e+f x))^m \tan (e+f x)\right ) \operatorname{Subst}\left (\int \frac{(1+x)^{-\frac{1}{2}+m}}{\sqrt{1-x}} \, dx,x,\sec (e+f x)\right )}{f \sqrt{1-\sec (e+f x)}}\\ &=\frac{2^{\frac{1}{2}+m} \, _2F_1\left (\frac{1}{2},\frac{1}{2}-m;\frac{3}{2};\frac{1}{2} (1-\sec (e+f x))\right ) (1+\sec (e+f x))^{-\frac{1}{2}-m} (a+a \sec (e+f x))^m \tan (e+f x)}{f}\\ \end{align*}

Mathematica [A]  time = 0.10297, size = 73, normalized size = 1. \[ \frac{2^{m+\frac{1}{2}} \tan (e+f x) (\sec (e+f x)+1)^{-m-\frac{1}{2}} (a (\sec (e+f x)+1))^m \text{Hypergeometric2F1}\left (\frac{1}{2},\frac{1}{2}-m,\frac{3}{2},\frac{1}{2} (1-\sec (e+f x))\right )}{f} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[e + f*x]*(a + a*Sec[e + f*x])^m,x]

[Out]

(2^(1/2 + m)*Hypergeometric2F1[1/2, 1/2 - m, 3/2, (1 - Sec[e + f*x])/2]*(1 + Sec[e + f*x])^(-1/2 - m)*(a*(1 +
Sec[e + f*x]))^m*Tan[e + f*x])/f

________________________________________________________________________________________

Maple [F]  time = 0.267, size = 0, normalized size = 0. \begin{align*} \int \sec \left ( fx+e \right ) \left ( a+a\sec \left ( fx+e \right ) \right ) ^{m}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(a+a*sec(f*x+e))^m,x)

[Out]

int(sec(f*x+e)*(a+a*sec(f*x+e))^m,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (f x + e\right ) + a\right )}^{m} \sec \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^m,x, algorithm="maxima")

[Out]

integrate((a*sec(f*x + e) + a)^m*sec(f*x + e), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (a \sec \left (f x + e\right ) + a\right )}^{m} \sec \left (f x + e\right ), x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^m,x, algorithm="fricas")

[Out]

integral((a*sec(f*x + e) + a)^m*sec(f*x + e), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a \left (\sec{\left (e + f x \right )} + 1\right )\right )^{m} \sec{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))**m,x)

[Out]

Integral((a*(sec(e + f*x) + 1))**m*sec(e + f*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \sec \left (f x + e\right ) + a\right )}^{m} \sec \left (f x + e\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^m,x, algorithm="giac")

[Out]

integrate((a*sec(f*x + e) + a)^m*sec(f*x + e), x)